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1. Introduction

The exactly marginal deformations of N = 4 supersymmetric Yang-Mills (SYM) preserving

N = 1 supersymmetry, systematically investigated by Leigh and Strassler in [1], have been

studied extensively since the finding, by Lunin and Maldacena in [2], of the supergravity

dual of the so-called β-deformed1 N = 4 SYM theory. Marginal deformations provide

an interesting opportunity to study the AdS/CFT-correspondence [3] in new supergravity

backgrounds.

The perturbative behaviour of the β-deformed theory shares many features of the un-

deformed theory [4 – 7]. In [8] it was found that maximally helicity violating (MHV) planar

amplitudes in N = 4 SYM have an iterative structure for all n-point amplitudes. These

1By β-deformation we mean a one-parameter complex deformation β = βR + iβC . With a γi-deformed

theory we mean a theory containing three complex parameters γ1, γ2 and γ3. In the literature, a γ-deformed

theory sometimes means deformations by the real part of β which is called βR in the present work.
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results were then transferred to the β-deformed theory in [7] by placing the deformation

into the so-called star product. The use of the star product, which was first introduced

in this context in [2], to study marginal deformations is especially convenient when calcu-

lating amplitudes, since the dependence of the deformation can be isolated into an overall

prefactor.

The main purpose of this article is to show that it is possible to obtain the general

Leigh-Strassler deformation2, including cubic terms with all indices equal the same value,

from the star product. In section 2 we discuss the necessary conditions for conformal de-

formations of N = 4 SYM. In Section 3 we consider two global Z3-symmetries, in order

to solve an eigenvalue system with eigenvectors as a linear combination of the three chiral

superfields Φi. The two systems are related by an element of SU(3) which is also a sym-

metry of the N = 4 SYM Lagrangian written in terms of N = 1 superfields. We continue

to define the star product for Z3 × Z3-symmetry charges, containing three deformation

parameters γi. The β-deformed theory is obtained by putting all parameters equal. In

the the diagonal system the star product is easily evaluated. We calculate the superpoten-

tial, with ordinary multiplication replaced by the star product, in the β- and γi-deformed

theories. The result is the general Leigh-Strassler deformed superpotential, including the

terms of the form Tr Φ3
i . In section 4 we compute the starproduct of two chrial superfields

which are simple in the β-deformed case. In appendix B we present the the results in the

γi-deformed theory. In section 5 we study the tree-level amplitudes corresponding to terms

in the classical Lagrangian. In the β-deformed theory we find the expected 4-point scalar

interaction terms for a Leigh-Strassler deformed theory. However, in the γi-deformed case

we obtain component terms of the form Tr φ†
iφ

†
iφiφj , i.e with three identical indices, which

are not normally considered in a Leigh-Strassler deformed theory. Their gauge invariance

and supersymmetric properties have to be investigated. In Section 6 we extend the proof

in [7] which shows that the phase-dependence of HMV planar tree- and loop-diagrams can

be computed from an effective tree-level vertex, determined only by external fields. We

conclude that the proof also holds for our present theories. In the final section we compute

the one-loop finiteness conditions for conformal marginal deformed N = 4 supersymmetric

theories with both β- and γi-deformation.

2. Conformal deformations of N = 4 SYM

The most general renormalizable N = 1 supersymmetric action which is invariant under

a gauge group G, can be written as, excluding gauge-fixing and ghost terms,3

S =
1

16T (A)g2

∫
d4xd2θTrW αWα +

∫
d4xd2θd2θ̄Φ†

A

(
e2gV

)A

B
ΦB +

∫
d4xd2θW + h.c.

(2.1)

2To distinguish from the β-deformed superpotential we use the word “general” when cubic terms of the

form Tr Φ3
i are present in the Leigh-Strassler deformed theory.

3We use the conventions of [9] such that the generators of the gauge group satisfy
ˆ

T a
R, T b

R

˜

= ifab
cT

c
R

for the representation R. The adjoint representation A is given by the structure constants such that

ad T a
R = (T a

A)b

c
= −ifab

c, normalized as Tr T a
AT b

A = −T (A)δab.
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The chiral superfield ΦA and its conjugate transform under irreducible representations

R of G. The index A runs over irreducible representations Ri and the component of

each irreducible representation is labeled by I, such that A = {i, I} [10]. The vector

superfield V A
B = Va (T a)AB contains the generators T a, a = 1, . . . ,dim G, of the gauge

group G defined by (T a)A
B =

(
T ai

)I

J
. The first term in (2.1) is related to the gauge theory

kinematic Lagrangian containing the gauge field Aµ and a Majorana spinor, which we call

λ4. W is the superpotential and is given by

W = CABCΦAΦBΦC , (2.2)

where CABC is totally symmetric in A, B and C or equivalent totally symmetric in the

pairs {i, I}, {j, J} and {k,K}. In the following we will restrict ourselves to

CABC ≡ Ci j k
I J K = aijkbIJK + hijkdIJK , (2.3)

where aijk and bIJK are totally anti-symmetric and hijk and dIJK are totally symmetric.

The supercurrent Jαα̇ of the theory has the anomaly [10, 1]

D̄α̇Jαα̇ = −1

3

[
βg

g
W βWβ + (ds − 3) + γi

j

(
ΦiD̄β̇D̄β̇Φ†j

)]
. (2.4)

where γi
j is the anomalous dimension for Φi. The anomaly (2.4) is zero in a conformal

theory. At one-loop we have

β(1)
g =

g3

16π2




∑

i

T (Ri) − 3C2(G) +
∑

i,j

T (Ri)γ
(1)i

j


 , (2.5)

and

β
(1)
hijk

= hijk


(ds − 3) − 1

2

∑

i,j

riγ
(1)i

j


 . (2.6)

The number ri counts the number of chiral fields in each term of the superpotential with

the sum ds =
∑

i ri. The anomalous dimension is [11]

γ
(1)i

j = Cikl
IKLC̄JKL

jkl − 2g2T (R)δi
jδ

I
J . (2.7)

Vanishing of the one-loop anomalous dimension also implies UV finiteness of N = 1 SYM

at two-loop level [11].

N = 4 supersymmetric Yang-Mills in the N = 1 superfield formulation contains three

chiral superfields in the adjoint representation of the SU(N) gauge group and is obtained

by taking i = 1, 2, 3 and I ≡ a = 1, . . . , N2−1. Thus, if we define Φj ≡ Φi
aT

a the structure

constants are εIJK = fabc, which can be expressed fabc = −iT (R)−1TrT a
[
T b, T c

]
. The

symmetric part dabc vanishes for a real representation. The N = 4 SYM superpotential

becomes

WN=4 = − ig

T (R)
εijkTrΦi [Φj,Φk] . (2.8)

– 3 –
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In the Wess-Zumino gauge, the N = 4 supersymmetric Lagrangian can be written in terms

of N = 1 component fields as

L = Tr

(
1

4
FµνFµν − iλ†

4σ̄
µDµλ4 − iλ†

i σ̄
µDµλi − D̄µφ†

iDµφi

−
√

2g

T (A)

(
λ4

[
φ†

i , λi

]
+ λ†

4

[
λ†

i , φi

])
− g

T (A)

(
εijkλi

[
λj , φk

]
+ εijkλ†

i

[
λ†

j, φ
†
k

])

− g2

2T (A)2

[
φ†

i , φi

] [
φ†

j , φj

]
− 2g2

T (A)2

[
φ†

i , φ
†
j

] [
φi, φj

])
. (2.9)

Conformal invariance of N = 4 SYM follows from (2.7) where γ
(1)i

j = 0 since Cikl
IKL =

gT (R)εijkfabc. This also implies that β
(1)
hijk

= β
(1)
g = 0.

As we will see, marginal deformations of N = 4 SYM which preserve the finiteness

condition at one-loop can be obtained by replacing the ordinary multiplication between

all fields by an operator called star product. The general form of coupling constants (2.3)

which contains the anti-symmetric part aijk and the symmetric part hijk can be written

on the form

W = aijkTrΦi [Φj,Φk] + hijkTr Φi {Φj,Φk} . (2.10)

By choosing the non-zero couplings as aijk = εijkλ/6, h123 = λ(1 − q)/6(1 + q) and hiii =

h′/2 we obtain the general Leigh-Strassler deformation [1, 12], also known as the full Leigh-

Strassler deformation [13],

W = h (Tr Φ1Φ2Φ3 − qTr Φ1Φ3Φ2) + h′
(
Tr Φ3

1 + Tr Φ3
2 + Tr Φ3

3

)
. (2.11)

where h = 2λ/(1 + q).

In the next section we will compute the couplings h, q and h′ in a star product deformed

theory. In section 7 we will evaluate the conditions for the supercurrent in (2.4) to remain

anomaly-free.

3. Deformations from star product

Introducing the star product has shown to be beneficial in the study of marginal defor-

mations of N = 4 SYM [2, 7]. In general, it is not easy to compute the star product of two

chiral superfields. To simplify the computation we will in this section solve an eigenvalue

system. We continue to define the star product for three deformation parameters. This

allows us to compute the superpotential for both β- and γi-deformed theories.

3.1 Eigenvalue system

The key idea for this work is to make use of the permutation symmetries of the super-

potential to study marginal deformations of N = 4 SYM, by introducing a generalized

multiplication operator between all fields, which we call “star product”. When the sym-

metries permute a set of fields in the original so called Φ-system, it is hard to compute the

star product directly. Instead, we rotate the system by an SU(3) transformation into the

– 4 –
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so called Ψ-system in which the symmetries act with diagonal elements. In the Ψ-system,

the star product can easily be computed.

Let us begin by choosing two symmetries of the superpotential which we denote S1

and S2. In the diagonal Ψ-system, the symmetries act as U(1) × U(1) transformations on

the vector Ψ = (Ψ1,Ψ2,Ψ3) of chiral superfields accordingly

Si : Ψ −→ QiΨ , (3.1)

where

Q1 =




1 0 0

0 e−iϕ1 0

0 0 eiϕ1


 and Q2 =




eiϕ2 0 0

0 e−iϕ2 0

0 0 1


 . (3.2)

At this stage, ϕ1 and ϕ2 are arbitrary parameters. The superpotential (2.10) and also the

Lagrangian (2.9) are invariant under an SU(3) transformation. We introduce the vector

Φ = (Φ1,Φ2,Φ3) of chiral superfields such that

Ψ = TΦ , T ∈ SU(3) . (3.3)

We now demand that the symmetries S1 and S2 act as permutations of the Φi’s:

Si : Φ −→ PiΦ , (3.4)

with

P1 =




0 a2 0

0 0 a3

a1 0 0


 and P2 =




0 0 b3

b1 0 0

0 b2 0


 , (3.5)

where the parameters ai and bi will be determined below. The relation between Pi and Qi

is

Pi = T−1QiT . (3.6)

For the permutation matrices to be elements of SU(3), their elements have to satisfy i)

a1a2a3 = 1 and b1b2b3 = 1 and ii) |ai|2 = 1 and |bi|2 = 1. It then follows that P3
i = 1

which is equivalent to Q3
i = 1. Thus, the relation (3.6) breaks the U(1) × U(1) symmetry

to Z3 × Z3 with eiϕ1 = eiϕ2 = ei2π/3. For simplicity we define α = ei2π/3 with inverse ᾱ.

The relation 1 + α + ᾱ = 0 will be used repeatedly. As a result, the symmetries S1 and S2

act on the Ψi’s as

S1 : (Ψ1,Ψ2,Ψ3) −→ (Ψ1, ᾱΨ2, αΨ3)

S2 : (Ψ1,Ψ2,Ψ3) −→ (αΨ1, ᾱΨ2,Ψ3) . (3.7)

These relations will be used when we compute the star product in section 3.3.

The most general solution to (3.6) is

T =




a1t1 a1a2t1 t1
αa1t2 ᾱa1a2t2 t2
ᾱa1t3 αa1a2t3 t3


 , (3.8)

– 5 –
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where ai are the parameters of P1 and bi = α/ai+1 in P2. The parameters t1, t2 and t3 have

to satisfy i) 3t1t2t3a
2
1a2(ᾱ − α) = 1 and ii) |ti|2 = 1/3 for T ∈ SU(3). These requirements

are fulfilled for (including the conditions for Pi ∈ SU(3), see below (3.6))

a1 = eiθ1 , a2 = eiθ2 = e−i(θ1+θ3) , a3 = eiθ3 ,

t1 = eiρ1√
3

, t2 = eiρ2√
3

= iei(θ3−θ1−ρ1−ρ3)√
3

, t3 = eiρ3√
3

.
(3.9)

The transfer matrix becomes

T =
1√
3




ei(θ1+ρ1) e−i(θ3−ρ1) eiρ1

αiei(θ3−ρ1−ρ3) ᾱie−i(θ1+ρ1+ρ3) iei(θ3−θ1−ρ1−ρ3)

ᾱei(θ1+ρ3) αe−i(θ3−ρ3) eiρ3


 . (3.10)

If we denote the part of the elements in (3.10) by tij which are dependent of the phases θi

and ρi, then we can write

Ψi =
∑

j

α(i+2)jtij Φj =
∑

j

α(i+2)jeiρi

j∏

j̃

eiθ
j̃ Φj . (3.11)

This compact form will be useful in the coming sections. The permutation matrices (3.5)

are

P1 =




0 e−i(θ1+θ3) 0

0 0 eiθ3

eiθ1 0 0


 and P2 = α




0 0 e−iθ1

ei(θ1+θ3) 0 0

0 e−iθ3 0


 . (3.12)

The transfer matrix (3.10) contains four independent parameters. Two of parameters,

θ1 and θ3, are inherited from the permutation symmetry in (3.12). The remaining two

parameters, ρ1 and ρ3, are coming from the original N = 4 SYM SU(4) R-symmetry. It is

interesting to note that there does not exist a matrix T which takes Qi to Pi (see (3.6)) for

continuous parameters. As we will see in the next section, the surviving discrete Z3 × Z3

symmetry will let us define the star product, which is especially simple to compute in the

Ψ-system. Transforming to the Φ-system induces extra cubic terms, of the form Tr Φ3
i ,

to the superpotential which correspond to terms in the general Leigh-Strassler deformed

theory.

3.2 Definition of star product

We define the star product between two fields Ψi and Ψj as, in analogy to [2],

Ψi ? Ψj = ei det eQij Ψi · Ψj , (3.13)

where Ψi · Ψj is an ordinary product and the determinant is defined as

det Q̃ij =

∣∣∣∣∣
Q̃1

i Q̃2
i

Q̃1
j Q̃2

j

∣∣∣∣∣ =

∣∣∣∣∣
γ̃iQ

1
i γ̃iQ

2
i

γ̃jQ
1
j γ̃jQ

2
j

∣∣∣∣∣ = γ̃iγ̃j det Qij . (3.14)

– 6 –
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(Q1
i , Q

2
i ) are the S1 × S2 charges of the fields for the symmetries S1 and S2 of the corre-

sponding superpotential. It will be convenient to rewrite the three deformation parameters

γ̃1, γ̃2 and γ̃3 as

γ 2(i+j) = γ̃iγ̃j , 2(i + j) mod 3 , (3.15)

so that γ1 = γ̃2γ̃3, γ2 = γ̃3γ̃1 and γ3 = γ̃1γ̃2. Note that the deformation parameters γ̃iγ̃i

also exist. Since they always occur in the combination γ̃iγ̃i detQii where det Qii = 0, the

deformations γ̃iγ̃i do not have to be accounted for in calculations.

A deformed multiplication law, such as (3.13), is usually denoted ? and called “star

product”. Non-commutative field theories are often obtained by replacing the ordinary

point-wise product of fields by the Moyal star product, which is defined by a bidifferential

operator over some manifold. In the present context, the star product may be viewed as

generalized couplings between fields. This is a convenient way to study marginal deforma-

tions of supersymmetric N = 4 theories.’

In order to prove that the star product is associative we have to assume that the ele-

mentary fields are defined by (3.13) and (3.14) with arbitrary parameters γ̃i and that a com-

posite field of n elementary fields is characterized by the additive property (Q̃1
ij...n, Q̃2

ij...n)

where

Q̃1,2
ij...n = Q̃1,2

i + Q̃1,2
j + · · · + Q̃1,2

n . (3.16)

We can now compute the triple star product

Ψi ? Ψj ? Ψk = ei det eQjkΨi ? (Ψj · Ψk) = ei(det eQij+det eQjk+det eQik)Ψi · Ψj · Ψk . (3.17)

The computation of the star product in (3.17) is associative. The proof is given in appendix

A. To keep the permutation symmetry of the trace operator also in a star product defined

theory we use the short-hand notation

Tr Ψi ? Ψj ≡ 1

2
(Tr Ψi ? Ψj + Tr Ψj ? Ψi)

=
1

2
eγ 2(i+j) det QijTr Ψi · Ψj +

1

2
e−γ 2(i+j) det QijTr Ψj · Ψi . (3.18)

In other words, we must symmetrize the trace explicitly before replacing the ordinary

multiplication with the star product. The trace for the triple star product is

Tr Ψi ? Ψj ? Ψk=
1

3
ei(γk det Qij+γi det Qjk+γj det Qik)

×
[
e2iγi det Qkj + e2iγj det Qik + e2iγk det Qji

]
Tr ΨiΨjΨk . (3.19)

When all deformations parameters are equal we obtain the so-called β-deformed theory

with β = γi. If not, we have the three-parameter γi-deformed theory. In section 4 we will

compute the star product Φi ? Φj of two β-deformed chiral superfields in the Φ-system.

The general results for the γi-deformed theory are presented in appendix B.

– 7 –
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3.3 Superpotential in the one-parameter deformed theory

The β-deformed theory is obtained by setting all γi’s equal in (3.19). We use the notation

β = γi. From (3.7) we find that the superfields Ψi in the superpotential have charges

Ψ1 :
(
QS1

1 , QS2
1

)
= (0, 1)

Ψ2 :
(
QS1

2 , QS2
2

)
= (−1,−1)

Ψ3 :
(
QS1

3 , QS2
3

)
= (1, 0) . (3.20)

In the Ψ-system it is easy to evaluate the star product. From (3.19) and (3.20) we find

W = Tr Ψ1 ? Ψ2 ? Ψ3 − Tr Ψ1 ? Ψ3 ? Ψ2 = eiβ Tr Ψ1 ·Ψ2 ·Ψ3 − e−iβ Tr Ψ1 ·Ψ3 ·Ψ2 . (3.21)

Since the superpotential transforms as the determinant of the SU(3) T -matrix in (3.10),

we have

W = Tr Ψ1 ? [Ψ2
?, Ψ3] = Tr Φ1 ? [Φ2

?, Φ3] . (3.22)

If we use the relation (3.11) between Ψ and Φ we find

ΨiΨjΨk =
∑

l, m, n

α(i+2)l+(j+2)m+(k+2)ntiltjmtknΦlΦmΦn . (3.23)

Performing the trace gives

Tr ΨiΨjΨk =
1

3

∑

l, m, n

ᾱl+m+n
(
αil+jm+kn+ αkl+im+jn+ αjl+km+in

)
tiltjmtknTr ΦlΦmΦn.

(3.24)

To relate to the superpotential we compute

Tr Ψ1Ψ2Ψ3 =
1

3

∑

l, m, n

αn−l
(
1 + αl+m+n + ᾱl+m+n

)
t1lt2mt3nTr ΦlΦmΦn , (3.25)

which is zero unless l + m + n = 0 mod 3. This implies that the only possible terms are

Tr Ψ1Ψ2Ψ3 =
i√
3

[
ᾱTr Φ1Φ2Φ3 + αTr Φ1Φ3Φ2

+ ei(2θ1+θ3)Tr Φ3
1 + e−i(θ1+2θ3)Tr Φ3

2 + e−i(θ1−θ3)Tr Φ3
3

]
. (3.26)

In a similar way, we can compute the remaining part of the superpotential (3.21). The

superpotential is invariant under SU(3) so that the phases θi can be transformed away by

the field redefinition

Φi −→ ei(θi+1−θi)/3Φi (3.27)

Using (3.21), (3.22), (3.26) and (3.27) gives the β-deformed superpotential

Tr Φ1 ? [Φ2
?, Φ3] =

−2√
3

[
sin(β − 2π

3
)Tr Φ1Φ2Φ3 + sin(β +

2π

3
)Tr Φ1Φ3Φ2

+ sin β
(
Tr Φ3

1 + Tr Φ3
2 + Tr Φ3

3

) ]
. (3.28)

– 8 –
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3.4 Superpotential in the three-parameter deformed theory

In this section we let the three deformation parameters be arbitrary. In a similar way as

in the previous section we compute

Tr Ψ1 ? Ψ2 ? Ψ3 =
1

3

∑

i, j, k

(
eixαk−i + eiyαj−k + eizαi−j

)
t1it2jt3kTr Φi Φj Φk , (3.29)

and

Tr Ψ1 ? Ψ3 ? Ψ2 =
1

3

∑

i, j, k

(
e−ixᾱk−i + e−iyᾱj−k + e−izᾱi−j

)
t1it3jt2kTr Φi Φj Φk , (3.30)

where we have introduced

x = γ2 + γ3 − γ1 , y = γ3 + γ1 − γ2 and z = γ1 + γ2 − γ3 . (3.31)

Using (3.22) then gives the superpotential

W = Tr Φ1 ? [Φ2
?, Φ3] =

2i

3

∑

i, j, k

Pi, j, k(x, y, z)t1it2jt3kTr Φi Φj Φk , (3.32)

where

Pi, j, k(x, y, z) = sin (x + (k − i)u) + sin (y + (j − k)u) + sin (z + (i − j)u) . (3.33)

with u = 2π/3. Explicitly the terms are

Pi, i, i(x, y, z) = sin (x) + sin (y) + sin (z) ,

Pi, i+1, i+2(x, y, z) = sin (x − u) + sin (y − u) + sin (z − u) ,

Pi, i+2, i+1(x, y, z) = sin (x + u) + sin (y + u) + sin (z + u) . (3.34)

The indices are modulus three. All other terms vanish for any value of x, y and z, due to

the cyclic property of the trace operator. The P -functions4 satisfy the identity

Pi, i, i(x, y, z) + Pi, i+1, i+2(x, y, z) + Pi, i+2, i+1(x, y, z) = 0 . (3.35)

Finally, after using the field redefinition (3.27), the γi-deformed superpotential becomes

Tr Φ1 ? [Φ2
?, Φ3] =

−2√
3

[P1,2,3(x, y, z)Tr Φ1Φ2Φ3 + P1,3,2(x, y, z)Tr Φ1Φ3Φ2

+ P1,1,1(x, y, z)
(
Tr Φ3

1 + Tr Φ3
2 + Tr Φ3

3

)
] . (3.36)

The superpotential (3.36) is of the form of the general Leigh-Strassler deformation (2.11)

which can be seen by defining

h =
−2√

3
P1,2,3(x, y, z) , q = −P1,3,2(x, y, z)

P1,2,3(x, y, z)
, h′ =

−2√
3
P1,1,1(x, y, z) . (3.37)

4These functions are not arbitrary named, since the level-set surfaces (3.34) belongs to the class of triply

periodic minimal surfaces and are known in the literature as Schwartz’s P-surfaces.
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4. Star product of composite chiral superfields

It is straightforward to compute the star product of two chiral superfields in the Φ-system.

These relations are useful when evaluating Feynman diagrams. To begin, we recall (3.11)

with inverse

Φi =
∑

j

ᾱ(i+2)jt∗ji Ψj =
∑

j

ᾱ(i+2)je−i(ρj+
P

i θi) Ψj . (4.1)

which gives the star product

Φi ? Φj =
1

9

∑

k,l,m,n

α(k+2)(m−i)+(l+2)(n−j)eiγ2(k+l) det Qkle
i(

Pm
m̃ θm̃+

Pn
ñ θñ−

Pi
ĩ
θ
ĩ
−

Pj

j̃
θ
j̃
)
ΦmΦn

=
1

9

∑

k,m,n

α(k−1)(m+n−i−j)
(
1 + αn−jeiγk+2 + αm−ie−iγk+2

)

×e
i(

Pm
m̃ θm̃+

Pn
ñ θñ−

Pi
ĩ
θ
ĩ
−

Pj

j̃
θ
j̃
)
ΦmΦn . (4.2)

In appendix B we present the explicit expressions for the star product in the γi-deformed

case. In the β-deformed case the expression (4.2) is considerable simplified. All terms are

zero unless i + j − m − n = 0 mod 3 which gives the expressions

Φi ? Φi =
1

3

[
(1 + 2 cos β)ΦiΦi +

(
1 + 2 cos(β − 2π

3
)

)
ei(θ1−θ3−3

Pi
ĩ
θ
ĩ
)Φi+1Φi+2

+

(
1 + 2 cos(β +

2π

3
)

)
ei(θ1−θ3−3

Pi
ĩ
θ
ĩ
)Φi+2Φi+1

]
,

Φi ? Φi+1 =
1

3

[
(1 + 2 cos β)ΦiΦi+1 +

(
1 + 2 cos(β − 2π

3
)

)
Φi+1Φi

+

(
1 + 2 cos(β +

2π

3
)

)
e−i(θ1−θ3−3

Pi+2

ĩ
θ
ĩ
)Φi+2Φi+2

]
,

Φi+1 ? Φi =
1

3

[
(1 + 2 cos β)Φi+1Φi +

(
1 + 2 cos(β +

2π

3
)

)
ΦiΦi+1

+

(
1 + 2 cos(β − 2π

3
)

)
e−i(θ1−θ3−3

Pi+2

ĩ
θ
ĩ
)Φi+2Φi+2

]
. (4.3)

5. Tree-level amplitudes from star product

To begin, we replace the ordinary multiplication between all component fields in the

Lagrangian (2.9) by the star product. From (3.20) we find that the component fields have

the charges

ψ1, λ1 :
(
QS1

1 , QS2
1

)
= (0, 1)

ψ2, λ2 :
(
QS1

2 , QS2
2

)
= (−1,−1)

ψ3, λ3 :
(
QS1

3 , QS2
3

)
= (1, 0)

Aµ, λ4 :
(
QS1

4 , QS2
4

)
= (0, 0) . (5.1)
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The part

Linv = −Tr

( √
2g

T (A)

(
λ4

[
φ†

i , λi

]
+ λ̄4

[
λ†

i , φi

])
+

g2

2T (A)2

[
φ†

i , φi

] [
φ†

j , φj

])
, (5.2)

of the Lagrangian (2.9) is unchanged when replacing the normal multiplication with the star

product. The reasons are that the gluino λ4 and its conjugate from the vector multiplet are

neutral and that the combinations λ†
iφi and φ†

iφi, with sum over i, are phase-independent.

The terms in the Lagrangian (2.9) that are not invariant under the star product are

L? =− g

T (A)
Tr

(
εijkλi ? [λj

?, φk]+εijkλi ?
[
λ†

j
?, φ†

k

]
+

2g

T (A)

[
φ†

i
?, φ†

j

]
?

[
φi

?, φj

])
. (5.3)

Since the Lagrangian (2.9), and naturally (5.3), is invariant under the transformation (3.10)

we are free to express our fields in the ψ-system. From a generalization of the triple star

product (3.17) it is easy to evaluate the star product (3.13) to express

∑

i,j

Tr
[
φ†

i
?, φ†

j

]
?

[
φi

?, φj

]
= 2

∑

i,j,k,l

Qijkl(γ1, γ2, γ3)

k,l,i,j∏

k̃,l̃,̃i,j̃

ei(θ
k̃
+θ

l̃
−θ

ĩ
−θ

j̃
)Tr φ†

iφ
†
jφkφl , (5.4)

where we have defined

Qijkl =
∑

m

[
2 cos

(
2γm+2−

2πn1

3

)
− (1 + cos 2γm+2) cos

2πn2

3

]
α(m+1)n3 , (5.5)

with

n1 = i − j − k + l, n2 = i − j + k − l and n3 = −i − j + k + l . (5.6)

We can see from (5.4) and (5.5) that interaction terms φ†
iφ

†
jφkφl are allowed for any com-

bination of the indices, in the γi-deformed theory. That is, we may have terms with two,

three or four indices of the same value. However, in the β-deformed theory, all terms are

proportional to the factor 1 + αi+j−k−l + ᾱi+j−k−l which is zero unless i + j − k − l = 0

mod 3. As a consequence, terms with three indices of the same value vanish. In the

non-deformed theory, terms with three or four indices of the same value vanish since the

interaction is a product of two commutators. Interaction terms with three indices identical

are in general not considered in the context of marginal deformations of N = 4 SYM.

Properties of gauge invariance and supersymmetry have to be investigated.

The four-scalar interaction (5.4) of the F -term can be obtained from

LF =

(
∂W?

∂φi

)†

?

(
∂W?

∂φi

)
. (5.7)

Replacing the star product between the derivatives by an ordinary multiplication, might at

first thought give rise to a new theory without terms with three indices of the same value.

However, calculations shows that the new couplings are

Qijkl
new = 2

∑

m

[cos(2γm+2 − 2πn1/3) − cos(2πn2/3)] α
(m+1)n3 , (5.8)
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which still contain terms with three identical indices. In obtaining (5.8), the trace is not

symmetrized since there is an ambiguity how to perform the symmetrization. It might

be possible to overcome this ambiguity by evaluating the star product before defining

Φj ≡ Φi
aT

a from which it follows that the structure constants fabc are related to the trace

operator. This would make (5.8) a valid relation. In the present context, the general rule

is that all multiplication of fields should be replaced by the star product, as in (5.7).

In deriving (5.5), and also (5.8), we have assumed the deformation parameters γi to

be real. To introduce complex variables we can go back to the definition γ2(i+j) = γ̃iγ̃j , see

(3.15), with γ̃i = γ̃R
i + iγ̃C

i where γ̃R
i and γ̃C

i are real. This leaves us with the deformations

γ̃iγ̃i+1 = γ̃R
i γ̃R

i+1 − γ̃C
i γ̃C

i+1 + i
(
γ̃R

i γ̃C
i+1 + γ̃C

i γ̃R
i+1

)
≡ γR−

i+2 + iγC+
i+2

γ̃∗
i γ̃i+1 = γ̃R

i γ̃R
i+1 + γ̃C

i γ̃C
i+1 + i

(
γ̃R

i γ̃C
i+1 − γ̃C

i γ̃R
i+1

)
≡ γR+

i+2 + iγC−
i+2 , (5.9)

in addition to their complex conjugate. In (5.9) there is no obvious way how to separate

the real and imaginary part from our original definition of γi without introducing extra

deformations, corresponding to γ̃∗
i γ̃i+1. This complicates the study of the real and complex

part of the theory, but might at the same time open up for other interesting possibilities

to consider. For complex deformations we find the couplings to be

Qijkl =
∑

m

[
cos

(
2γR−

m+2 − un1

)
cosh 2γC−

m+2 + cos
(
2γR+

i+2 − un1

)
cosh 2γC+

i+2

− cosh
(
2γC+

m+2 − iun2

)
− cos 2γR−

m+2 cos un2

]
α(m+1)n3 , (5.10)

where we have used u = 2π/3. If we let γR+
m+2 = γR−

m+2 in (5.9) and (5.10), we obtain the

real γi-deformed theory with couplings (5.5), as expected.

To compute the star product of the first term in (5.3), we can make use of the trans-

formation (3.10) and the field redefinition (3.27) for the component fields φi and λi. We

find

εijkTr λi ? [λj
?, φk] =

2i

3

(
Pi,i+1,i+2(x, y, z)Tr [λiλi+1φi+2 − λiφi+1λi+2] (5.11)

+ Pi,i+2,i+1(x, y, z)Tr [λiλi+2φi+1 − λiφi+2λi+1]

+ P1,1,1(x, y, z) (Trλ1 [λ1, φ1] + Trλ2 [λ2, φ2] + Trλ3 [λ3, φ3])
)

,

where we have used the same notation and definitions as in the equations (3.31) and (3.34).

The conjugate term can be computed in a similar way and equals

εijkTr λ†
i ?

[
λ†

j
?, φ†

k

]
=

2i

3

(
Pi,i+2,i+1(x

∗, y∗, z∗)Tr
[
λ†

iλ
†
i+1φ

†
i+2 − λ†

iφ
†
i+1λ

†
i+2

]

+ Pi,i+1,i+2(x
∗, y∗, z∗)Tr

[
λ†

iλ
†
i+2φ

†
i+1 − λ†

iφ
†
i+2λ

†
i+1

]

+ P1,1,1(x
∗, y∗, z∗)

(
Trλ†

1

[
λ†

1, φ
†
1

]
+ Trλ†

2

[
λ†

2, φ
†
2

]

+ Trλ†
3

[
λ†

3, φ
†
3

]))
, (5.12)

where again the fields have been redefined
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6. Phase dependence of amplitudes from star product

To compute n-point loop, or just even tree-level, amplitudes is a tedious work. Organizing

the Feynman diagrams by decomposed momentum and helicity, instead of momentum and

polarized spin, has shown to dramatically reduce their complexity. These MHV diagrams

share an iterative structure for computing higher loops [8]. Evaluating HMV amplitudes

in a star product deformed theory shows the strength of the procedure.

In [7] it was shown in a β-deformed theory not containing terms φ†2
i φ2

i that an arbitrary

HMV planar tree or loop amplitude has a β-deformed phase factor which can be read off

from a single effective vertex. This vertex is only dependent on the external fields and not

on the internal structure. In this section we will show that the results found in [7] also

hold for our present β- and γi-deformed theories. In doing so, we will briefly extend the

proof in [7].

The statement is that the deformation dependence for a general n-point HMV planar,

tree or loop, amplitude An(F1, . . . , Fn) is entirely determined by the configuration of the

external fields F1, . . . , Fn, so that

An(F1, . . . , Fn) : Tr (F1 ? F1 . . . ? Fn) = [phase(γ)] Tr (F1F1 . . . Fn) . (6.1)

Let us start by considering a general HMV planar tree amplitude. Since an HMV diagram

consists of fused vertices of opposite helicity, each propagator is proportional to F †
I ? FI ,

with sum over I, which is phase independent due to opposite charges. This means that

the internal structure is phase independent. A result which is true for both the β- and

the γi-deformed theory. Thus, the phase dependence of the amplitude lies entirely in the

external fields.

The argument is the same for planar loop amplitudes. Per definition, a planar diagram

has no intersecting lines. Each internal line, between two vertices, is proportional to F †
I ?FI ,

with sum over I, which again is independent of the phase. Hence the phase dependence of a

planar diagram can be computed from an effective tree-level vertex as in (6.1), determined

only by external fields.

In the ψ-system, all planar amplitudes in both the β- and γi-deformed theories are

proportional to their N = 4 counterparts. Since N = 4 SYM is a finite theory, our derived

β- and γi-deformed theories should also share the same property of conformal invariance.

Since the ψ-system is equivalent to the φ-system, through an SU(3) transformation, we can

conclude that the Leigh-Strassler deformation obtained from the star product, including

diagrams with three indices of the same value, for the specific coupling constants (3.34) and

(5.5), are conformal in the planar limit. In the next section we will compute the one-loop

finiteness condition. The iterative structure of planar MHV amplitudes in N = 4 SYM,

studied in [8], should also hold for our deformed theories since the phase dependence can

be isolated for each amplitude.

7. One-loop finiteness condition

The one-loop finiteness condition is equivalent to the vanishing of the anomalous dimension

(2.7) that was discussed in Section 2. If we compare (2.3) with the superpotential (3.32)
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we find that

Cijk
abc =

1

2
Pi,j,k(x, y, z)t1it2jt3k

(
fabc + dabc

)
. (7.1)

The antisymmetric property of fabc then gives

Cikl
acdC̄

bcd
jkl =

1

4

∑

i

[
|Pi,i+1,i+2 − Pi,i+2,i+1|2 facdfbcd

+ |Pi,i+1,i+2 + Pi,i+2,i+1|2 dacddbcd + |Pi,i,i|2 dacddbcd

]
. (7.2)

Using facdfbcd = 2N and dacddbcd = 2N − 8/N and explicitly write the P - functions in

(3.34), we find the one-loop finiteness condition to be

g2
γi

=
3 |hγi

|2
4

[
3 |cos x + cos y + cos z|2 + 2 |sin x + sin y + sin z|2

(
1 − 4

N2

)]
. (7.3)

This simplifies to

g2
β =

27 |hβ |2
4

[
3 |cos β|2 + 2 |sin β|2

(
1 − 4

N2

)]
. (7.4)

in the β-deformed theory. The β-deformed theory studied in [7] showed that a complex de-

formation of the form β = βR+iβC gives the one-loop finiteness condition g2 ∝ |h|2 cosh 2βC

in the large-N limit. Feynman supergraph calculations showed that this planar equivalence

with the N = 4 SYM theory holds up to four loops.

In the present β-deformed theory5, we instead get the planar equivalence

g2
β ∝ |hβ |2

(
2 cosh 2βC + sinh2 βC + cos2 βR

)
, (7.5)

which is dependent on the parameter βR. It would be interesting to understand the un-

derlying reason for this dependence in a supergraph formalism.

8. Summary and discussion

We have shown that it is possible to obtain the general Leigh-Strassler deformation, in-

cluding terms of the form Tr Φ3
i , from the definition (3.13) of the star product. The super-

potential has been computed for the β-deformed theory in (3.28) and for the γi-deformed

theory in (3.36). The analysis was based on two equivalent systems of chiral superfields

which we have called the Ψ- and the Φ-system, related by an SU(3) transformation. The

latter system corresponds to charges in an off-diagonal matrix obtained from an SU(3)

transformation of the diagonal Z3 × Z3-symmetry charges. In the diagonal Ψ-system the

star product is easily evaluated.

When we computed the tree-level amplitudes corresponding to terms in the classical

Lagrangian we found the expected Leigh-Strassler deformed terms for a β-deformed theory.

5Note that here we only have β = β̃β̃ and β∗ = β̃∗β̃∗. When computing the one-loop conditions, terms

as β̃β̃∗ are not present, so it is possible to define β = βR + iβC where βR = βR− and βC = βC+, with

notation as in (5.9).
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However, in the γi-deformed case, the four-scalar interaction of the F -term contained terms

of the form Tr φ†
iφ

†
jφkφl for any value of the indices. Terms with three equal indices vanish

in the β-deformed theory, but are present in the γi-deformed case.

We have extended the proof in [7] to also cover our present theories. We concluded

that for an arbitrary HMV planar tree or loop amplitudes, the phase dependence of the

deformation can be computed from an effective tree-level vertex determined only by ex-

ternal fields, and not the internal structure. In the ψ-system (component fields) all planar

amplitudes in our present theories are proportional to their N = 4 counterparts. Since

N = 4 SYM is a finite theory our present theories should share the same properties. We

also concluded that the iterative structure of MHV amplitudes in N = 4 SYM, found in

[8], should also hold for our deformed theories. In section 7 we computed the one-loop

finiteness condition. It would be interesting to find permutation matrices (3.5) of a more

general form to establish a relation between coupling constants and more general conditions

for a finite theory.

The supergravity dual to the real β-deformed theory was generated in [2], by a com-

bination of T-dualites and a shift (called TsT-transformation) on the isometries of the

five-sphere part of AdS5 ×S5. The complex part of β followed from a non-trivial S-duality

transformation. In [14] for bosons and including fermions in [15], it was shown that three

consecutive TsT-transformations generate a three-parameter deformation of AdS5 × S5.

The dual field theory corresponds to a non-supersymmetric three-parameter marginal defor-

mation of N = 4 SYM. It would be interesting to understand if the three-parameter super-

gravity background can be obtained in a similar way, by consecutive TsT-transformations,

for our present theories.

A Lax representation, which implies integrability of strings moving in the Lunin-

Maldacena background [2], was also found in [14]. In [16] and [17], it was concluded that

the integrability is lost in the planar limit, for complex β-deformed theories. More general

Leigh-Strassler deformed theories, containing Tr Φ3
i , where consider in [12] to study inte-

grability. It would also be interesting to understand if the present results can be translated

to a one-loop dilation operator to win insight in the integrability of marginal deformed

N = 4 SYM.
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A. Associativity of the star product

In this appendix we will show that

(Ψi ? Ψj) ? Ψk = Ψi ? (Ψj ? Ψk) , (A.1)

which is to say that the star product (3.13) is associative.

We begin to use the definition (3.16) for a composite field of two fields
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Q̃1
ij ≡ Q̃1

i + Q̃1
j , and Q̃2

ij ≡ Q̃2
i + Q̃2

j , (A.2)

so that Ψi · Ψj is characterized by (Q̃1
ij , Q̃

2
ij). The triple star product becomes

Ψi ? (Ψj ? Ψk) = ei det eQjkΨi ? (Ψj · Ψk) = ei(det eQjk+det eQi,jk)Ψi · Ψj · Ψk , (A.3)

where

det Q̃i,jk ≡
∣∣∣∣∣

Q̃1
i Q̃2

i

Q̃1
jk Q̃2

jk

∣∣∣∣∣ =

∣∣∣∣∣
Q̃1

i Q̃2
i

Q̃1
j + Q̃1

k Q̃2
j + Q̃2

k

∣∣∣∣∣

= Q̃1
i

(
Q̃2

j + Q̃2
k

)
− Q̃2

i

(
Q̃1

j + Q̃1
k

)
= Q̃1

i Q̃
2
j − Q̃2

i Q̃
1
j + Q̃1

i Q̃
2
k − Q̃2

i Q̃
1
k

= det Q̃ij + det Q̃ik . (A.4)

Thus, we have

Ψi ? (Ψj ? Ψk) = ei(det eQij+det eQjk+det eQik)Ψi · Ψj · Ψk . (A.5)

To prove associativity we also have to compute

(Ψi ? Ψj) ? Ψk = ei det eQij (Ψi · Ψj) ? Ψk = ei(det eQjk+det eQij,k)Ψi · Ψj · Ψk , (A.6)

where

det Q̃ij,k ≡
∣∣∣∣∣
Q̃1

ij Q̃2
ij

Q̃1
k Q̃2

k

∣∣∣∣∣ =

∣∣∣∣∣
Q̃1

i + Q̃1
j Q̃2

i + Q̃2
j

Q̃1
k Q̃2

k

∣∣∣∣∣ = det Q̃ik + det Q̃jk . (A.7)

This means that

(Ψi ? Ψj) ? Ψk = ei(det eQij+det eQjk+det eQik)Ψi · Ψj · Ψk . (A.8)

Comparing (A.5) and (A.8) proves the associativity (A.1) of the star product.

B. Star product in γi-deformed theory

In this appendix we present the results of star product evaluation of two chiral superfields.

We us the same notation as in section 4. In the γi-deformed case we find

Φi ? Φi =
1

9

∑

j,k


α(k−1)(i−j)(1 + 2 cos γk)

i,j∏

ĩ,j̃

e−2i(θ
ĩ
−θ

j̃
)ΦjΦj + α(k−1)(i−j+1) (B.1)

×
i,j∏

ĩ,j̃

e−i(2θ
ĩ
+θ

j̃
)
(
(1 + 2 cos(γk − u))ΦjΦj+1 + (1 + 2 cos(γk + u))Φj+1Φj

)

 ,
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Φi ? Φi+1 =
1

9

∑

j,k


α(k−1)(i−j−1)(1 + 2 cos(γk + u))

i,j∏

ĩ,j̃

ei(θ
ĩ+2−2θ

j̃
)ΦjΦj (B.2)

+ α(k−1)(i−j)
i,j∏

ĩ,j̃

ei(θ
ĩ+2−θ

j̃+2)
(
(1 + 2 cos γk)ΦjΦj+1 + (1 + 2 cos(γk − u))Φj+1Φj

)

 ,

Φi+1 ?Φi =
1

9

∑

j,k


α(k−1)(i−j−1)(1 + 2 cos(γk − u))

i,j∏

ĩ,j̃

ei(θ
ĩ+2−2θ

j̃
)ΦjΦj (B.3)

+ α(k−1)(i−j)
i,j∏

ĩ,j̃

ei(θ
ĩ+2−θ

j̃+2)
(
(1 + 2 cos(γk + u))ΦjΦj+1 + (1 + 2 cos γk)Φj+1Φj

)

 .

For products involving conjugate superfields we find

Φi ? Φ†
i =

1

9

∑

j,k

[(
3 + 2 cos

(
γk − 2π

3
(i − j)

))
ΦjΦ

†
j

+2ᾱk−1 cos

(
γk −

2π

3
(i − j + 1)

) j∏

j̃

ei(θ
j̃
−θ

j̃+1)ΦjΦ
†
j+1

+2αk−1 cos

(
γk − 2π

3
(i − j + 1)

) j∏

j̃

e−i(θ
j̃
−θ

j̃+1)Φj+1Φ
†
j


 , (B.4)

Φi ? Φ†
i+1 =

1

9

i∏

ĩ

e−i(θ
ĩ
−θ

ĩ+1)
∑

j,k

[
2αk−1 cos

(
γk − 2π

3
(i − j − 1)

)
ΦjΦ

†
j

+

(
3 + 2 cos

(
γk − 2π

3
(i − j)

)) j∏

j̃

ei(θ
j̃
−θ

j̃+1)ΦjΦ
†
j+1

+2 ᾱk−1 cos

(
γk − 2π

3
(i − j)

) j∏

j̃

e−i(θ
j̃
−θ

j̃+1)Φj+1Φ
†
j


 , (B.5)

Φi+1 ? Φ†
i =

1

9

i∏

ĩ

ei(θ
ĩ
−θ

ĩ+1)
∑

j,k

[
2ᾱk−1 cos

(
γk − 2π

3
(i − j − 1)

)
ΦjΦ

†
j

+2αk−1 cos

(
γk − 2π

3
(i − j)

) j∏

j̃

ei(θ
j̃
−θ

j̃+1)ΦjΦ
†
j+1

+

(
3 + 2 cos

(
γk − 2π

3
(i − j)

)) j∏

j̃

e−i(θ
j̃
−θ

j̃+1)Φj+1Φ
†
j


 , (B.6)

Φ†
i ? Φi =

1

9

∑

j,k

[(
3 + 2 cos

(
γk +

2π

3
(i − j)

))
Φ†

jΦj
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+2αk−1 cos

(
γk +

2π

3
(i − j + 1)

) j∏

j̃

e−i(θ
j̃
−θ

j̃+1)Φ†
jΦj+1

+2ᾱk−1 cos

(
γk +

2π

3
(i − j + 1)

) j∏

j̃

ei(θ
j̃
−θ

j̃+1)Φ†
j+1Φj


 , (B.7)

Φ†
i ? Φi+1 =

1

9

i∏

ĩ

ei(θ
ĩ
−θ

ĩ+1)
∑

j,k

[
2ᾱk−1 cos

(
γk +

2π

3
(i − j − 1)

)
e−iθ3Φ†

jΦj

+

(
3 + 2 cos

(
γk +

2π

3
(i − j)

)) j∏

j̃

e−i(θ
j̃
−θ

j̃+1)Φ†
jΦj+1

+2αk−1 cos

(
γk +

2π

3
(i − j)

) j∏

j̃

ei(θ
j̃
−θ

j̃+1)Φ†
j+1Φj


 , (B.8)

Φ†
i+1 ? Φi =

1

9

i∏

ĩ

e−i(θ
ĩ
−θ

ĩ+1)
∑

j,k

[
2αk−1 cos

(
γk +

2π

3
(i − j − 1)

)
eiθ1Φ†

jΦj

+2ᾱk−1 cos

(
γk +

2π

3
(i − j)

) j∏

j̃

e−i(θ
j̃
−θ

j̃+1)Φ†
jΦj+1

+

(
3 + 2 cos

(
γk +

2π

3
(i − j)

)) j∏

j̃

ei(θ
j̃
−θ

j̃+1)Φ†
j+1Φj


 . (B.9)
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